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Abstract 
Do highly productive researchers have significantly higher probability to produce top cited papers? Or does the 
increased productivity in science only result in a sea of irrelevant papers as a perverse effect of competition and 
the increased use of indicators for research evaluation and accountability focus? We use a Swedish author 
disambiguated dataset consisting of 48,000 researchers and their WoS-listed publications during the period of 
2008-2011 with citations until 2014 to investigate the relation between productivity and production of highly 
cited papers. As the analysis shows, quantity does make a difference.  
 
Conference Topic 
Indicators; Science policy; Research assessment 
 
Introduction 
One astonishing feature of the scientific enterprise is the role of a few extremely prolific 
researchers (Price, 1963). Thomson Reuters call them Highly Cited Researchers and they are 
listed and recognized per area. Based on another dataset, Scopus publications, Klavans & 
Boyack (2015) call them “superstars” and use them for large-scale studies of publication 
behaviour, thereby showing that superstars publishes less in isolated areas (retrieved using a 
clustering procedure), in dying areas, or in areas without an inherent dynamics. Highly 
productive and cited researchers tend to look for the new opportunities. Obviously, the highly 
productive researchers have to be taken into consideration for many reasons, both for science 
policy and for scholarly understanding of how the science system works.  
Within bibliometrics there is a discussion on how to measure and to identify the superstars. 
Many current papers discuss the correlation between the various indicators developed for 
performance measurement. One of the stable outcomes is that there is a high correlation 
between the numbers of papers a researcher has published and the number of citations 
received (Bosquet & Combes, 2013). From that perspective, both indicators tend to measure 
the same attribute of researchers, as is actually materialized in the introduction of the H-index 
(Hirsch, 2005). Parallel, the discussion about impact has shifted from counting (field 
normalized) numbers of citations to more qualified types of citations and publications. As the 
progress of science rests on the huge amount of effort and publications, the number of real 
discoveries and path breaking new ideas is rather small. This has led to a different focus. 
Instead of counting publications and citations, the decisive difference is whether a researcher 
contributes to the small set of very highly cited papers. Different thresholds are deployed, 
from the top 1% or 10% of the highly cited papers or with the CCS method proposed by 
Schubert & Glänzel (1988). Only when reaching into these select set of papers that qualifies 
for citations above the x% level one can be considered as really having distinctive result that 
contributes to scientific progress. Increasingly, performance measures take this selectivity into 
account, and when calculating overall productivity and impact figures for researchers, papers 
(productivity) and citations (impact) are weighted differently depending on the impact 
percentile the paper belongs to (Sandström & Wold, 2015).  
Of course, the question now comes up what a good publication strategy is – given this way of 
performance evaluation. Is publishing a lot the best way – or does that generally lead to normal 
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science, with low impact papers? The total number of citations received may still be large, but 
no top papers may have been produced. This is also the underlying idea of emerging 
movements in favour of ‘slow science’ like e.g., in the Netherlands; there the ‘science in 
transition’ movement (Dijstelbloem et al., 2014) was able to convince the minister of science 
and the big academic institutions to remove productivity as a criterion from the guidelines for 
the national research assessment (SEP). The underlying idea is that quality and not quantity 
should dominate – and that with all the emphasis on publications this has become corrupted.  
However, others seem to see this differently. In his important work on scientific creativity, 
Simonton (2004) has extensively argued that (i) having a breakthrough idea is a low probability 
event that happens by chance, and therefore that (ii) the more often one tries, the higher the 
probability to have a ‘hit’ so now and then. There are also other contextual factors that may 
improve the chance for important results, but overall, the number of tries (publications) is the 
decisive variable. This also explains why Nobel laureates have so many more publications than 
normal researchers (Zuckerman, 1967; Sandström & Van den Besselaar, forthcoming). The 
more often you try (publish), the higher the probability that there is something very new and 
relevant, and atypical for the scientific community (Uzzi et al., 2013).  
This brings us to the question whether there is a strong positive, or a negative relation 
between overall output (number of publications) and high impact papers. The answer of this 
question may inform our understanding of knowledge production and scientific creativity, but 
is also practically relevant for selection processes, and as explained above for research 
evaluation procedures: is high productivity a good thing, or a perverse effect and detrimental 
to the progress of science? 

Methods and Data 
In order to investigate this, we use the 74,000 WoS-publications 2008-2011 (with citations 
until 2014) of all researchers with a Swedish address using the following document types in 
databases SCI-E, SSCI and A&HCI: articles, letters, proceeding papers and reviews.  
For identifying authors and keeping them separate we use a combination of automatic and 
manual disambiguation methods. An algorithm for disambiguating unique individuals was 
developed by Sandström & Sandström (2009), based on Soler (2007) and Gurney, Holdings 
& van den Besselaar (2012) and was found to proceed fast, although with minor manual 
cleaning methods. The deployed method takes into account surnames and first-name initials, 
the words that occur in article headings, and the journals, addresses, references and journal 
categories used by each researcher. There is also weighting for the normal publication 
frequency of the various fields.  
As indicated, the data covers 74,000 articles and 195,000 author shares that have been judged 
to belong to Swedish universities or other Swedish organisations. In a few cases, articles from 
people who have worked both in Sweden and in one or more Nordic countries have been kept 
together, and articles have thus been included even if they came into being outside Sweden 
(the process of distinguishing names is thus carried out at Nordic level). 
All articles by each researcher are ranked, based on received citations and according to the 
about 260 subject categories as specified in the Web of Science, and the articles are divided 
into CSS (Characteristic Scores and Scales) classes (0, 1, 2, 3). While measures based on 
percentile groups (e.g. top1% etc.) are arbitrarily constructed, CSS have some advantages 
concerning the identification of outstanding citation rates (Glänzel & Schubert, 1988). The 
CSS method is a procedure for truncating a sample (e.g., a subfield citation distribution) 
according to mean values from the low-end up to the high-end. Every group created using this 
procedure helps to identify papers that fulfil the requirements for being cited above the 
respective thresholds. In this paper we will use two levels, level CSS1 and CSS3, which in the 
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former case cover the 20%-25% most cited papers, and in the latter case the about 2%-3% of 
most cited papers: the “outstandingly cited papers” (Glänzel, 2011).  
In this paper we will investigate the relation between quality and quantity in several different 
ways. We proceed in this way, as from a methodological perspective different options are 
open, without a convincing argument which one would be the better. By using a variety of 
methods, we avoid to produce results as artefacts of the method deployed. 
(i) Firstly, we calculate the probability to have one, two or three and more top cited papers, 
given the productivity level. We calculate this for the health, i.e. medical sciences (about 
15,000 researchers), where we classify these authors in several productivity classes. Class 1 
has one publication in the four years period under study, class 2 has two, class 3 has three to 
four, class 4 has five to eight, class 5 has nine to sixteen, class 6 has seventeen to 31 
publications, and finally class 7 covers researchers with 32 or more publications. Publications 
are integer counted, but citations are field normalized. 
(ii) Secondly, we do a simple regression with the total number of (integer counted, IC) 
publications as the independent variable, and the (also integer counted) number of top cited 
publications in terms of one of the definitions as discussed above. Also, here citations are 
field normalized. We have here all researchers, without normalizing for field based 
productivity figures. As the total set of researchers is dominated by life and medical sciences 
and by natural sciences, and as these groups have comparable average publications and 
citations, we assume that this does not really influence the results. Under point four below, we 
introduce a way of taking field differences in productivity into account. 
(iii) Thirdly, we do the same analysis as described above, but use fractional instead of full 
counting. This helps to investigate the effect of different ways of counting on the relations 
under study. 
(iv) Fourthly, we move to the field-normalized (fractional counted) productivity, and calculate 
the relation between in this way defined productivity and having at least one publication in 
CSS1 respectively in CSS3. In the last analysis, we can provide an integrated analysis of all 
researchers across all fields, as we produced field normalized output counts. This is done with 
a method – Field Adjusted Production (FAP) based on Waring estimations – as initially 
developed by Glänzel and his colleagues (Braun, Glänzel & Schubert, 1990; Koski, 
Sandström & Sandström, 2011) during the 1980s. FAP is further explained and tested in 
Sandström & Sandström (2009). Basically, the method is used in order to compensate for 
differences between research areas concerning the normal rate of scholarly production. For 
this all journals in the Web of Science have been classified according to five categories 
(applied sciences, natural sciences, health sciences, economic & social sciences, and arts & 
humanities). Categorisation of journals into macro fields is based on Science Metrix 
classification of research into five major domains. Note that in some of the following analysis 
we will refrain from applying the Waring method, consequently, instead the analysis will be 
performed per scientific macro fields (for further information, see < http://science-
metrix.com/en/classification>). 

Results 

(i) Does the probability of highly cited papers increase with productivity? 
We calculated the number of top cited papers (CSS3) for each of the seven productivity 
classes. From this, Figure 1 was created. Clearly, the probability increases with productivity, 
and this is the case for 1, 2 and 3 or more papers in the CSS3 class. In fact, the relation is 
slightly different for the three criteria. The higher the criterion, the larger the effect is at the 
high end of the productivity distribution. 
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Figure 1. Share of papers in the CSS3 top cited class by productivity class. 

(ii) What is the effect of productivity on the number of highly cited papers?  
We have done a regression analysis with highly cited papers as dependent variable, and 
productivity as independent variable. We did the analysis for the various top cited classes. In 
the three figures below, we show the regression results. For papers in the top 1% of the cited 
papers (Figure 1) the correlation is about 0.5. For the CSS3, the top 10% of the cited papers, 
and the CSS1 classes, the correlations are 0.58, 0.78 and 0.88. The correlations are fairly high. 
 

 
Figure 2. Top 1% of cited papers by total 

number of papers. 
 

 
Figure 3. CSS3 cited papers by total number of 

papers. 

 
Figure 4. Top 10% of cited papers by total 

number of papers. 

 
Figure 5. CSS1 cited papers by total number of 

papers. 
 
Interestingly, the correlation becomes higher the lower the citation threshold. Why this is the 
case is not yet investigated. A possibility is that high productive researchers with top papers 
always have co-authors of these high cited papers who themselves are not highly productive. 
In that sense one also expects top cited authors in the lower productivity segments, reducing 
the explained variance. So probably, one should only include PIs in the analysis to avoid this 
effect. This could be the topic for a subsequent study.  
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One should realize that a small share of all authors produces most of the papers and of the 
highly cited papers. The 6.3% of most productive researchers (everybody above eleven 
publications in four years) are responsible for 37% of all papers and for 53% of the top 1% of 
the cited papers. Also this supports the idea that quantity makes a difference. 

(iii) And the effect of fractional counted productivity on the number of highly cited papers? 
We did the above analysis also using fractional counting of productivity. The patterns are the 
same, but the correlations are about .15 to .20 lower than in the full counted model. How this 
can be explained will be addressed in a coming paper. But also here, the 6.3% of the most 
productive authors are decisive: they have 46.8% of the fractional counted top 1% of the cited 
papers.  

(iv) What is the effect of field adjusted production counting? 
The relation between having at least one paper in CSS1 and total field normalized output is 
plotted in Figure 6, and as becomes obvious, the correlation is fairly high (r = 0.79), and not 
much smaller than in the above four where we did not use the field adjusted production (0.90, 
see Figure 5). The results here suggest that indeed the more papers someone publishes, the 
higher the probability of having a paper in the group of fairly good papers cited above the 
threshold of CSS1. 
 

 
Figure 6. Fractionalized CSS1 by field 

adjusted production (all areas of science). 

 
Figure 7. Fractionalized CSS3 by field 

adjusted production (all areas of science). 

We also plot the relation between having at least one paper in the CCS3 (Figure 7), so in a 
much more narrow defined top, and field-normalized productivity, and although correlation is 
lower here, it is still considerable (r = 0.37). However, in the CSS3 case, the correlation when 
applying FAP is lower than the correlation without applying FAP (Figure 3), namely is 0.58. 
These differences need some further exploration.  
The underlying distribution for the fields of Natural sciences and Medical and Life sciences 
are given in Table 1, which shows for seven distinct productivity categories the percentage of 
Swedish researchers in that category, the average number of papers published in a four-year 
period, the average fraction of paper production, and of course the percentage of researchers 
with at least one paper in CCS3.  
As ‘field adjusted’ production (FAP) might be a rather abstract concept, we have translated it 
below for the various disciplines into ‘normal papers’. So, what is the relation between the 
number of papers produced (in a period of four years) and the probability of having a ‘top 
cited paper’ (in the top 2%-3% cited papers CSS3 class) during the period 2008-2014? This is 
a more sophisticated version of the analysis presented in section (i) above. As we clearly see 
in Table 2, the higher the number of papers, the more likely that one has a paper that ends up 
to be an outstandingly cited paper. Actually, the increase is rather steep and one may say that 
in most disciplines only with some ten papers in the period under consideration, there is a 
good chance of having a top paper. The humanities have a different pattern, as with a 
production of five papers one has the highest chance of reaching the top. 
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Table 1. CSS3 papers by production levels, Health sciences and Natural sciences 

 Medical and life sciences Natural sciences 
Category researchers Mean P Frac P CSS3 researchers Mean P Frac P CSS3 
1 (1 paper) 40.8% 1 0.2 0.03 9,0% 1 0.2 0.02 
2 (2 papers) 16.92% 2 0.4 0.06 16,3% 2 0.5 0.05 
3 (>2-4) 17.08%  3.4 0.7 0.10 17,4%  3.4 0.9 0.10 
4 (>4-8) 13.36%  6.1 1.3 0.21 13,7%  6.1 1.6 0.21 
5 (>8-16) 7.23% 11.6 2.4 0.44 8,3% 11.5 2.8 0.40 
6 (>16-32) 3.36% 22.3 4.4 1.05 4,1% 22.0 4.7 0.87 
7 (>32) 1.18% 50.5 8.8 3.45 1,2% 47.6 9.8 2.68 
Average  4.3 0.9 0.17  4.6 1.1 0.17 

Data for this table is built on publications from 37,114 researchers. 

Table 2: Probability of one outstanding paper (CSS3) at different levels of production. 

Average # of  Discipline 
publications Class Natural Health Applied Ec &Soc Hum 
1 1 5% 7% 7% 6% 9% 
2 2 11% 13% 13% 13% 8% 
3 3 20% 21% 21% 24% 25% 
6 4 31% 34% 33% 34% 33% 
11 5 49% 54% 53% 55% 33% 
20 6 / 7 61% 80% 66% 83%  
38 7   88%   
46 7 83%     
49 7  93%    

Note: Data for this table consist of ≈190,000 article shares with <40 authors per paper. The numbers of 
publication are the field-specific averages per productivity class (for more information, see Table 1). 

Conclusions 
As the above results show, there is not only a strong correlation between productivity 
(number of papers) and impact (number of citations), that also holds for the production of 
high impact papers: the more papers, the more high impact papers. In that sense, increased 
productivity of the research system is not a perverse effect of output oriented evaluation 
systems, but a positive development, as it strongly increases the occurrence of breakthroughs 
and important inventions (c.f. Uzzi et al., 2013). The currently upcoming discussion that we 
are confusing quality with quantity therefore lacks empirical support. As we deployed a series 
of methods, with results all pointing in the same direction, the findings are not an artefact of 
the selected method. 
The analysis also gives an indication of the output levels that one may strive at when selecting 
researchers for grants or jobs.  
We also plan some future work: Firstly, we plan to extend the analysis to some other 
countries, which of course requires large-scale disambiguation of author names. Secondly, we 
will in a next version control for number of co-authors, and for gender. The former relates to 
the discussion about team size and excellence, the latter to the ongoing debate on gender bias 
and gendered differences in productivity. Thirdly, the aim is to concentrate on principle 
investigators, and remove the incidental co-authors with low numbers of publications, as they 
may seem to be high impact authors at the lower side of the performance distribution. This all 
should lead to a better insight in the relation between productivity and impact in the science 
system. 
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